List of Conjectures
Chapter 2

C-1: **Linear Pair Conjecture** If two angles form a linear pair, then
______________________________.

(Lesson 2.5)

C-2: **Vertical Angles Conjecture** If two angles are vertical angles, then
______________________________.

(Lesson 2.5)

C-3: **Parallel Lines Conjecture** If two parallel lines are cut by a transversal,
then corresponding angles are ___________________. alternate interior angles are ___________________. and alternate exterior angles are ___________________.

(Lesson 2.6)

C-4: **Converse of the Parallel Lines Conjecture** If two lines are cut by a transversal to form pairs of congruent corresponding angles, congruent alternate interior angles, or congruent alternate exterior angles, then the lines are ___________________.

(Lesson 2.6)
Chapter 3

C-5: **Perpendicular Bisector Conjecture** If a point is on the perpendicular bisector of a segment, then it is ______________ from the endpoints. (Lesson 3.2)

C-6: **Converse of the Perpendicular Bisector Conjecture** If a point is equidistant from the endpoints of a segment, then it is on the __________________________ of the segment. (Lesson 3.2)

C-7: **Shortest Distance Conjecture** The shortest distance from a point to a line is measured along the __________________________ from the point to the line. (Lesson 3.3)

C-8: **Angle Bisector Conjecture** If a point is on the bisector of an angle, then it is ______________ from the sides of the angle. (Lesson 3.4)

C-9: **Angle Bisector Concurrency Conjecture** The three angle bisectors of a triangle __________________________. (Lesson 3.7)

C-10: **Perpendicular Bisector Concurrency Conjecture** The three perpendicular bisectors of a triangle __________________________

(Lesson 3.7)
C-11: **Altitude Concurrency Conjecture** The three altitudes (or the lines containing the altitudes) of a triangle __________________________.
(Lesson 3.7)

C-12: **Circumcenter Conjecture** The circumcenter of a triangle __________________________.
(Lesson 3.7)

C-13: **Incenter Conjecture** The incenter of a triangle __________________________.
(Lesson 3.7)

C-14: **Median Concurrency Conjecture** The three medians of a triangle __________________________.
(Lesson 3.8)

C-15: **Centroid Conjecture** The centroid of a triangle divides each median into two parts so that the distance from the centroid to the vertex is _______ the distance from the centroid to the midpoint of the opposite side.
(Lesson 3.8)

C-16: **Center of Gravity Conjecture** The __________________ of a triangle is the center of gravity of the triangular region.
(Lesson 3.8)
Chapter 4

C-17: **Triangle Sum Conjecture** The sum of the measures of the angles in every triangle is ___________. (Lesson 4.1)

C-18: **Third Angle Conjecture** If two angles of one triangle are equal in measure to two angles of another triangle, then the third angle in each triangle ___. (Lesson 4.1)

C-19: **Isosceles Triangle Conjecture** If a triangle is isosceles, then __. (Lesson 4.2)

C-20: **Converse of the Isosceles Triangle Conjecture** If a triangle has two congruent angles, then ________________________________ (Lesson 4.2)

C-21: **Triangle Inequality Conjecture** The sum of the lengths of any two sides of a triangle is ______________ the length of the third side. (Lesson 4.3)

C-22: **Side-Angle Inequality Conjecture** In a triangle, if one side is longer than another side, then the angle opposite the longer side______________________ __ (Lesson 4.3)

C-23: **Triangle Exterior Angle Conjecture** The measure of an exterior angle of a triangle ________________________________ (Lesson 4.3)
C-24: **SSS Congruence Conjecture** If the three sides of one triangle are congruent to the three sides of another triangle, then _________________.

(Congruent, similar, congruent, congruent, congruent)

(Lesson 4.4)

C-25: **SAS Congruence Conjecture** If two sides and the included angle of one triangle are congruent to two sides and the included angle of another triangle, then _________________.

(Congruent, similar, congruent, congruent, congruent)

(Lesson 4.4)

C-26: **ASA Congruence Conjecture** If two angles and the included side of one triangle are congruent to two angles and the included side of another triangle, then _________________.

(Congruent, similar, congruent, congruent, congruent)

(Lesson 4.5)

C-27: **SAA Congruence Conjecture** If two angles and a non-included side of one triangle are congruent to the corresponding angles and side of another triangle, then _________________.

(Congruent, similar, congruent, congruent, congruent)

(Lesson 4.5)

C-28: **Vertex Angle Bisector Conjecture** In an isosceles triangle, the bisector of the vertex angle is also ________________ and _________________.

(Bisector, perpendicular, congruent, congruent)

(Lesson 4.8)

C-29: **Equilateral/Equiangular Triangle Conjecture** Every equilateral triangle is _________________. Conversely, every equiangular triangle is _________________.

(Regular, regular)

(Lesson 4.8)
Chapter 5

C-30: **Quadrilateral Sum Conjecture** The sum of the measures of the four angles of any quadrilateral is _____________. (Lesson 5.1)

C-31: **Pentagon Sum Conjecture** The sum of the measures of the five angles of any pentagon s _____________. (Lesson 5.1)

C-32: **Polygon Sum Conjecture** The sum of the measures of the n interior angles of an n-gon s _________________. (Lesson 5.1)

C-33: **Exterior Angle Sum Conjecture** For any polygon, the sum of the measures of a set of xterior angles is ________________. (Lesson 5.2)

C-34: **Equiangular Polygon Conjecture** You can find the measure of each interior angle of an equiangular n-gon by using either of these formulas:

____________________________ or ________________________. (Lesson 5.2)

C-35: **Kite Angles Conjecture** The _________________ angles of a kite are _________________. (Lesson 5.3)

C-36: **Kite Diagonals Conjecture** The diagonals of a kite are _________________. (Lesson 5.3)
C-37: **Kite Diagonal Bisector Conjecture** The diagonal connecting the vertex angles of a kite is the ____________________________ of the other diagonal. (Lesson 5.3)

C-38: **Kite Angle Bisector Conjecture** The ________ angles of a kite are _________________ by a _________________. (Lesson 5.3)

C-39: **Trapezoid Consecutive Angles Conjecture** The consecutive angles between the bases of a trapezoid are ___________________________. (Lesson 5.3)

C-40: **Isosceles Trapezoid Conjecture** The base angles of an isosceles trapezoid are ___________________________. (Lesson 5.3)

C-41: **Isosceles Trapezoid Diagonals Conjecture** The diagonals of an isosceles trapezoid are ___________________________. (Lesson 5.3)

C-42: **Three Midsegments Conjecture** The three midsegments of a triangle divide it into _____________________________. (Lesson 5.4)

C-43: **Triangle Midsegment Conjecture** A midsegment of a triangle is ________________ to the third side and ______________ the length of ___________________________. (Lesson 5.4)
C-44: **Trapezoid Midsegment Conjecture** The midsegment of a trapezoid is ____________ to the bases and is equal in length to _________________.

(Lesson 5.4)

C-45: **Parallelogram Opposite Angles Conjecture** The opposite angles of a parallelogram are _________________.

(Lesson 5.5)

C-46: **Parallelogram Consecutive Angles Conjecture** The consecutive angles of a parallelogram are _________________.

(Lesson 5.5)

C-47: **Parallelogram Opposite Sides Conjecture** The opposite sides of a parallelogram are _________________.

(Lesson 5.5)

C-48: **Parallelogram Diagonals Conjecture** The diagonals of a parallelogram _________________.

(Lesson 5.5)

C-49: **Double-Edged Straightedge Conjecture** If two parallel lines are intersected by a second pair of parallel lines that are the same distance apart as the first pair, then the parallelogram formed is a ___________.

(Lesson 5.6)

C-50: **Rhombus Diagonals Conjecture** The diagonals of a rhombus are ________________, and they _________________.

(Lesson 5.6)
C-51: **Rhombus Angles Conjecture** The ________________ of a rhombus

______________ the angles of the rhombus.

(Lesson 5.6)

C-52: **Rectangle Diagonals Conjecture** The diagonals of a rectangle are

______________ and ________________________________.

(Lesson 5.6)

C-53: **Square Diagonals Conjecture** The diagonals of a square are ____________,

______________, and __________________________.

(Lesson 5.6)
Chapter 6

C-54: **Chord Central Angles Conjecture** If two chords in a circle are congruent, then they determine two central angles that are ___________. (Lesson 6.1)

C-55: **Chord Arcs Conjecture** If two chords in a circle are congruent, then their __________________________ are congruent. (Lesson 6.1)

C-56: **Perpendicular to a Chord Conjecture** The perpendicular from the center of a circle to a chord is the ______________ of the chord. (Lesson 6.1)

C-57: **Chord Distance to Center Conjecture** Two congruent chords in a circle are ______________________ from the center of the circle. (Lesson 6.1)

C-58: **Perpendicular Bisector of a Chord Conjecture** The perpendicular bisector of a chord ___________________________. (Lesson 6.1)

C-59: **Tangent Conjecture** A tangent to a circle __________________________

the radius drawn to the point of tangency. (Lesson 6.2)

C-60: **Tangent Segments Conjecture** Tangent segments to a circle from a point outside the circle are _______________. (Lesson 6.2)
C-61: **Inscribed Angle Conjecture** The measure of an angle inscribed in a circle is _________________________________. (Lesson 6.3)

C-62: **Inscribed Angles Intercepting Arcs Conjecture** Inscribed angles that intercept the same arc _____________________. (Lesson 6.3)

C-63: **Angles Inscribed in a Semicircle Conjecture** Angles inscribed in a semicircle __________________________. (Lesson 6.3)

C-64: **Cyclic Quadrilateral Conjecture** The ___________________________ angles of a cyclic quadrilateral are ___________________________. (Lesson 6.3)

C-65: **Parallel Lines Intercepted Arcs Conjecture** Parallel lines intercept ____________________ arcs on a circle. (Lesson 6.3)

C-66: **Circumference Conjecture** If C is the circumference and d is the diameter of a circle, then there is a number _ such that $C = ______________$. If $d = 2r$ where r is the radius, then $C = ______________$. (Lesson 6.5)

C-67: **Arc Length Conjecture** The length of an arc equals the ____________________
_______________________________. (Lesson 6.7)
Chapter 7

C-68: **Reflection Line Conjecture** The line of reflection is the _______________
______________________ of every segment joining a point in the original figure
with its image. (Lesson 7.1)

C-69: **Coordinate Transformations Conjecture**

The ordered pair rule \((x, y) \rightarrow (-x, y)\) is a ___________ over the ________.

The ordered pair rule \((x, y) \rightarrow (x, -y)\) is a ___________ over the ________.

The ordered pair rule \((x, y) \rightarrow (-x, -y)\) is a ___________ about _________.

The ordered pair rule \((x, y) \rightarrow (y, x)\) is a ___________ over _______________.

(Lesson 7.2)

C-70: **Minimal Path Conjecture** If points \(A\) and \(B\) are on one side of line \(ℓ\), then

the minimal path from point \(A\) to line \(ℓ\) to point \(B\) is found by ______________
__
__
__
__.

(Lesson 7.2)

C-71: **Reflections over Parallel Lines Conjecture** A composition of two

reflections over two parallel lines is equivalent to a single ________________.

In addition, the distance from any point to its second image under the two

reflections is _________ the distance between the parallel lines. (Lesson 7.3)
C-72: **Reflections over Intersecting Lines Conjecture** A composition of two reflections over a pair of intersecting lines is equivalent to a single __________________. The angle of _______________ is _________ the acute angle between the pair of intersecting reflection lines. (Lesson 7.3)

C-73: **Tessellating Triangles Conjecture** __________ triangle will create a monohedral tessellation. (Lesson 7.5)

C-74: **Tessellating Quadrilaterals Conjecture** ________________ quadrilateral will create a monohedral tessellation. (Lesson 7.5)
Chapter 8

C-75: **Rectangle Area Conjecture** The area of a rectangle is given by the formula _______________, where A is the area, b is the length of the base, and h is the height of the rectangle.

(Lesson 8.1)

C-76: **Parallelogram Area Conjecture** The area of a parallelogram is given by the formula _______________, where A is the area, b is the length of the base, and h is the height of the parallelogram.

(Lesson 8.1)

C-77: **Triangle Area Conjecture** The area of a triangle is given by the formula _______________, where A is the area, b is the length of the base, and h is the height of the triangle.

(Lesson 8.2)

C-78: **Trapezoid Area Conjecture** The area of a trapezoid is given by the formula ________________, where A is the area, b_1 and b_2 are the lengths of the two bases, and h is the height of the trapezoid.

(Lesson 8.2)

C-79: **Kite Area Conjecture** The area of a kite is given by the formula ________________, where d_1 and d_2 are the lengths of the diagonals.

(Lesson 8.2)
C-80: **Regular Polygon Area Conjecture** The area of a regular polygon is given by the formula ______________, where \(A \) is the area, \(a \) is the apothem, \(s \) is the length of each side, and \(n \) is the number of sides. The length of each side times the number of sides is the perimeter \(P \), so \(sn = P \). Thus you can also write the formula for area as ______________.

(Lesson 8.4)

C-81: **Circle Area Conjecture** The area of a circle is given by the formula ______________, where \(A \) is the area and \(r \) is the radius of the circle.

(Lesson 8.5)
Chapter 9

C-82: **The Pythagorean Theorem** In a right triangle, the sum of the squares of the lengths of the legs equals the square of the length of the hypotenuse. If a and b are the lengths of the legs, and c is the length of the hypotenuse, then _________________. (Lesson 9.1)

C-83: **Converse of the Pythagorean Theorem** If the lengths of the three sides of a triangle satisfy the Pythagorean equation, then the triangle _________________. (Lesson 9.2)

C-84: **Isosceles Right Triangle Conjecture** In an isosceles right triangle, if the legs have length l, then the hypotenuse has length _________. (Lesson 9.3)

C-85: **30°-60°-90° Triangle Conjecture** In a 30°-60°-90° triangle, if the shorter leg has length a, then the longer leg has length _________, and the hypotenuse has length _____________. (Lesson 9.3)

C-86: **Distance Formula** The distance between points $A(x_1, y_1)$ and $B(x_2, y_2)$ is given by $(AB)^2 = \left(\begin{array}{c} x_2 - x_1 \\ y_2 - y_1 \end{array} \right)^2$. (Lesson 9.5)

C-87: **Equation of a Circle** The equation of a circle with radius r and center (h, k) is _________________. (Lesson 9.5)
Chapter 10

C-88: **Prism-Cylinder Volume Conjecture** The volume of a prism or a cylinder is the __________________ multiplied by the ___________.
(Lesson 10.2)

C-89: **Pyramid-Cone Volume Conjecture** If B is the area of the base of a pyramid or a cone and H is the height of the solid, then the formula for the volume is $V = \ldots$.
(Lesson 10.3)

C-90: **Sphere Volume Conjecture** The volume of a sphere with radius r is given by the formula _______________.
(Lesson 10.6)

C-91: **Sphere Surface Area Conjecture** The surface area, S, of a sphere with radius r is given by the formula _______________.
(Lesson 10.7)
Chapter 11

C-92: **Dilation Similarity Conjecture** If one polygon is the image of another polygon under a dilation, then ______________________________.

(Lesson 11.1)

C-93: **AA Similarity Conjecture** If ______ angles of one triangle are congruent to ______ angles of another triangle, then ______________________________

___________.

(Lesson 11.2)

C-94: **SSS Similarity Conjecture** If the three sides of one triangle are proportional to the three sides of another triangle, then the two triangles are ____________.

(Lesson 11.2)

C-95: **SAS Similarity Conjecture** If two sides of one triangle are proportional to two sides of another triangle and the included angles are congruent, then the triangles are similar. (Lesson 11.2)

C-96: **Proportional Parts Conjecture** If two triangles are similar, then the corresponding ____________, ____________, and ________________ are ________________ to the corresponding sides.

(Lesson 11.4)
C-97: **Angle Bisector/Opposite Side Conjecture** A bisector of an angle in a triangle divides the opposite side into two segments whose lengths are in the same ratio as __
_____________________________________. (Lesson 11.4)

C-98: **Proportional Areas Conjecture** If corresponding sides of two similar polygons or the radii of two circles compare in the ratio \(\frac{m}{n} \), then their areas compare in the ratio ________________. (Lesson 11.5)

C-99: **Proportional Volumes Conjecture** If corresponding edges (or radii, or heights) of two similar solids compare in the ratio \(\frac{m}{n} \), then their volumes compare in the ratio ________________. (Lesson 11.5)

C-100: **Parallel/Proportionality Conjecture** If a line parallel to one side of a triangle passes through the other two sides, then it divides the other two sides ______________________. Conversely, if a line cuts two sides of a triangle proportionally, then it is _________ to the third side. (Lesson 11.6)

C-101: **Extended Parallel/Proportionality Conjecture** If two or more lines pass through two sides of a triangle parallel to the third side, then they divide the two sides __________________________. (Lesson 11.6)
Chapter 12

C-102: **SAS Triangle Area Conjecture** The area of a triangle is given by the formula ____________________, where \(a\) and \(b\) are the lengths of two sides and \(C\) is the angle between them.
(Lesson 12.3)

C-103: **Law of Sines** For a triangle with angles \(A\), \(B\), and \(C\) and sides of lengths \(a\), \(b\), and \(c\) (\(a\) opposite \(A\), \(b\) opposite \(B\), and \(c\) opposite \(C\)),

______________________________.
(Lesson 12.3)

C-104: **Pythagorean Identity** For any angle \(A\)______________________________.
(Lesson 12.4)

C-105: **Law of Cosines** For any triangle with sides of lengths \(a\), \(b\), and \(c\), and with \(C\) the angle opposite the side with length \(c\)

______________________________.
(Lesson 12.4)